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Abstract. A finite-difference scheme based on flux difference splitting is presented for the solution of the
two-dimensional shallow-water equations of ideal fluid flow. A linearised problem, analogous to that of Riemann for
gasdynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining
approximate solutions to the linearised problem. The method of upwind differencing is used for the resulting scalar
problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious
oscillations. An extension to the two-dimensional equations with source terms, is included. The scheme is applied to
a dam-break problem with cylindrical symmetry.

1. Introduction

The flow of water in a frictionless channel with rectangular cross section and smoothly
varying bottom surface is governed by the two-dimensional shallow-water equations. The
assumptions of hydrostatic pressure distribution and small bottom slope are used in deriving
these equations [1]. Since analytical solutions of these equations are not generally available,
they are solved numerically.

Several explicit and implicit finite-difference methods have been used to solve the
shallow-water equations [2, 3, 4]. One feature of this set of hyperbolic equations is the
formation of bores, i.e. discontinuous solutions, which can be difficult to represent accurate-
ly even if a shock-capturing method is used.

In the field of unsteady gasdynamics governed by the Euler equations, where shocks are
frequently present, some authors have designed finite-difference schemes that have good
shock-capturing properties, see e.g. [5]. These schemes solve linearised Riemann problems
using upwind differencing and flux limiters to obtain shocks that are spread over two or three
mesh points. An alternative approach to flux difference splitting was proposed by Vila [6] for
the equations of isentropic gas dynamics and has been applied with success to the shallow-
water equations [7]. The scheme of Godunov [8] solves Riemann problems exactly using an
iterative procedure. Vila simplifies this iteration using approximate Riemann invariants, and
achieves second-order accuracy by considering generalised Riemann problems, i.e. ones
where the data is assumed to be piecewise linear discontinuous. In contrast, the scheme in
[5] applies upwind differencing to a specially constructed set of scalar problems. Second-
order accuracy is then achieved using classical second-order scalar schemes, limited to avoid
non-physical oscillations in the solution.

In this paper a new scheme is presented for the shallow-water equations that incorporates
the ideas mentioned earlier for the Euler equations. Although the derivation of this scheme
is detailed, its implementation is straightforward. The resulting algorithm is efficient and
produces satisfactory results for the two-dimensional test problem of a breaking dam.
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2. Governing equations

The St. Venant equations governing the flow of water in a frictionless channel of rectangular
cross section can be written in conservation form as

wt + F x + G z = f+ g, (2.1)

where

w = (, Ou, Ow)T, (2.2a)

F(w) = (cu, u2 + -, )uw) , (2.2b)

G(w) = (w, 4uw, w2 + -2/ )' (2.2c)

f(w) = (0, g hx, 0 )T, (2.3a)

g(w) = (0, 0, g h,,)T (2.3b)

and

4 = g(7 + h). (2.4)

The quantities = +(x, z, t) and u = u(x, z, t) and w = w(x, z, t) represent g multiplied by
the total height above the bottom of the channel and the components of the fluid velocity in
the x and z directions, respectively, at a general position x, z and at time t. The gravitational
constant is represented by g and the undisturbed depth of the water is given by h(x, z). The
elevation q7 = -q(x, z, t) above the plane y = 0 is measured in the vertical y direction. The
special case when h(x, z) = constant is considered first and the extension to the general case
is developed from the special case. Equation (2.1) has been written so that the right-hand
side does not contain any derivatives of flow variables. However, the vectors f and g are
associated with derivatives in the x and z directions, respectively, as a consequence of the
terms hx and hz . (N.B. Equations (2.1)-(2.4) represent conservation of mass and momen-
tum. If we combine the mass and momentum equations we arrive at the more familiar
equations of motion

Ut + uux + wuz = -gx ,

and

w, + uwx + ww z = -g77z .)

3. Operator splitting

We solve equation (2.1) using a Riemann solver together with the technique of operator
splitting, [9], i.e. we solve successively
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w, + Fx = f (3.la)

and

w, + G = g (3.lb)

along x- and z-coordinate lines, respectively. We shall discuss the solution of equation (3.1a)
and the solution of equation (3.lb) will then follow by symmetry.

4. Linearised Riemann problem

If the approximate solution of equations (3. la) is sought along a coordinate line z = zo using
a finite-difference method then the solution is known at a set of discrete mesh points
(x, z, t) = (x,, zo, t) at any time t = t. Following Godunov [8] the approximate solution wj
to w at (x, z 0, tn ) can be considered as a set of piecewise constants w = for x E
(x, - Ax/2, x, + Ax/2) at time t, where Ax = xj-x,_1 is a constant mesh spacing. A
Riemann problem is now present at each interface x_l1 /2 = (xj_1 + x,) separating adjacent
states w, _, w. If the shallow-water equations are linearised by considering the Jacobian
matrix of the flux function F to be constant in each interval (x,_l, x,), the resulting equations
can be solved approximately using explicit time stepping. The time step At is restricted so
that the solutions of adjacent Riemann problems do not interact. The scalar problems that
result from this analysis can be solved by upwind differencing; however, an approximate
Jacobian matrix needs to be constructed in each interval so that shock-capturing is
automatic.

5. Approximate Riemann solver

Consider firstly equations (3.1a) with h(x, z) = constant. The Jacobian matrix A = dF/dw of
the flux function F(w) has eigenvalues A, with corresponding eigenvectors e,, i = 1, 2, 3 given
by

A = u + , e = (1, u + , w )T , (5.la)

A2 = u - , e = (1, u - W, )T, (5.1b)

A3 = u, e3 = (0, O, 1)T . (5.c)

This information can be used to develop approximate solutions of the Riemann problem of
Section 4.

Consider two adjacent states wL', WR (left and right) given at either end of the cell (XL, xR)
on an x-coordinate line z = z0 , and consider also the algebraic problem of finding an
approximate Jacobian A = A(wL, wR) in this cell such that

AAw = AF,
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where A( ) = ( )R - ( )L. A solution to this problem, for arbitrary jumps Aw, can be used
to obtain a conservative scheme with good shock-capturing properties when incorporated
with operator splitting. Equivalently, approximate eigenvalues Ai and corresponding eigen-
vectors ei of A can be sought such that

Aw= E 5,, (5.3a)
i=l

and
3

AF= E Aa&i,, (5.3b)
t=l

where a, are wavestrengths prescribed in terms of the arbitrary jump Aw.
By initially considering small jumps Aw, so that equations (5.3a,b) are satisfied to within

O(A2), a solution of equations (5.3a,b) can be determined [10]. The required approximate
eigenvalues, eigenvectors and wavestrengths are

A = + A , =(1, + , )T , (5.4a)

h A2 u - 2=A41W, =1u , , (5.4b)

A3 = u, e3 = (0, O, 1)T . (5.4c)

a1 = Ab + Au, (5.5a)

a2 = 2 A - Au, (5.5b)

a3 = i Aw (5.5c)

where the approximations to u, w, 4 and V; in (XL, XR) are given by

V V/RSR + VSL S = u or w, (5.6a,b)

(5.6c)

and

q= (4+ 4,L)* (5.6d)

respectively. Thus, using equation (5.3b), equation (3.la) with h(x, z) =constant can be
approximated by

3

n+1 n Z AEaSe,
Wpt P + =1 =0, (5.7)

At Ax
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along an x-coordinate line, z = z, where Ax and At represent the mesh spacing in the x and t
directions, respectively, and the point P may be L or R. Upwind differencing now applied to
equation (5.7) gives the following first-order algorithm for the solution of equation (3.1a)
with h(x, z) = constant:

At -
add A e,, towRwhenAi>O

or (5.8)

At -
add- A a,ei, towLwhen Ai<O.

Thus, we note the direction of flow of information given by the approximate eigenvalues A,
and use this information to update the solution consistent with the theory of characteristics
of equation (3.1a). In addition, second-order transfers of these first-order increments can be
made to achieve higher accuracy, providing they are limited to maintain monotonicity [11].
The use of these 'flux-limiters' improves accuracy without introducing non-physical spurious
oscillations, especially at bores. To allow depression waves to be treated correctly, the
first-order increment can be considered as two separate increments being sent to either end
of the cell [12].

6. Extensions

Consider now the inhomogeneous equation (3.1a) where h(x, z) is smoothly varying and a
'source-term' f = (0, gfhx, 0 )T is present. This term, however, contains no derivatives of
flow variables, and therefore the scheme of Section 5 can be retained for shock-capturing.
Glaister has demonstrated [13] that for linearised systems the source term f should be
upwinded in the same way as Fx . This has been used successfully for axially symmetric,
compressible flows [14]. Specifically, approximating f in the interval (XL, XR) by f=
(0, go Ah/Ax, 0 )T, where = iV-, and projecting

l 3
=__1 I A,/3e,, (6.1)

AX i=1

enables equations (3.1a) to be solved approximately. (N.B. Ah = h(xR, zo) - h(xL, zo),
where z = zo is the x-coordinate line being considered). The first-order algorithm can be
written as in equation (5.8) where the , are replaced by modified wavestrengths A = c, + 3,.
Solving equation (6.1) gives

g Ah 
01,2 = 2+T Ah /' 3 =0 . (6.2a,c)

7. A test problem

The problem of a breaking circular dam can be used to test the scheme of Section 5.
Consider a channel, x 0, z 0, with rigid walls along x = 0 and z = 0, whose bottom

49



50 P. Glaister

surface is flat, and a barrier placed along x 2 + z2 = 0.5. The water on one side of the
barrier is at a different height to that on the other. At time t = 0 the barrier is removed and
the resulting flow consists of a bore travelling towards x = z = 0 and a depression wave
travelling out from the walls. To treat this problem numerically consider a fixed region 0 x,

z 1 with a barrier at x + = 0.5. In x 2 + z >0.5 the water height is determined by Al
and on the other side by 40 < Al. This problem deals with ideal fluid flow and does not take
into account real flow effects such as wall shear. The exact solution is a bore travelling
towards x = z = 0, which is subsequently reflected from the origin. (This problem is part of

the general problem in the x-z plane with a circular barrier along Vx 2 + = 0.5.)

8. Numerical results

Numerical results are given for the dam-break problem of Section 7 using the finite-
difference scheme of Section 5. We take 0 = 1, qB = 2 and the 'Minmod' limiter [11] has
been used so that the resulting scheme is second-order accurate, but no spurious oscillations
are produced. The results given in Figs 1-4 represent 31 equally spaced elevation contours at
times t = 0.12, 0.24, 0.48 and 0.60 respectively, and 50 x 50 mesh points have been used. We
see the propagation of the bore towards the origin and its subsequent reflection. We also plot
the solution along the line x = y.
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Eevetlon et t = 0.120 , ontoure from 1.000 to 2.000

Fig. 1. Solution of the dam-break problem at t = 0.12.
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Elevetion t t = 0.240 , contour from 1.000 to 2.000
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Fig. 2. Solution of the dam-break problem at t = 0.24.
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Fig. 3. Solution of the dam-break problem at t = 0.48.
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Elevtlon ct t = 0.600 , contour from 1.683 to 2.433
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Fig. 4. Solution of the dam-break problem at t = 0.60.

The explicit finite-difference scheme of Section 5 is computationally efficient and the c.p.u.
time taken to compute the results given above was as follows. Using an Amdahl V7 with
50 x 50 mesh points and the 'Minmod' limiter takes 0.75 c.p.u. seconds to compute one time

step and a total of 15 c.p.u. seconds to reach a real time of 0.06 using 20 time steps.

9. Conclusions

A conservative finite-difference scheme is presented for the solution of the two-dimensional
shallow-water equations based on flux difference splitting. By considering linearised
Riemann problems, and solving these approximately using upwind differencing, enables the

flow resulting from a dam-break to be predicted satisfactorily. The resulting scheme is
computationally efficient and can be used with confidence to predict accurate solutions to
two-dimensional flows.
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